Portfolio optimization under convex incentive schemes
نویسندگان
چکیده
We consider the terminal wealth utility maximization problem from the point of view of a portfolio manager who is paid by an incentive scheme, which is given as a convex function g of the terminal wealth. The manager’s own utility function U is assumed to be smooth and strictly concave, however the resulting utility function U ◦ g fails to be concave. As a consequence, the problem considered here does not fit into the classical portfolio optimization theory. Using duality theory, we prove wealth-independent existence and uniqueness of the optimal portfolio in general (incomplete) semimartingale markets as long as the unique optimizer of the dual problem has a continuous law. In many cases, this existence and uniqueness result is independent of the incentive scheme and depends only on the structure of the set of equivalent local martingale measures. As examples, we discuss (complete) one-dimensional models as well as (incomplete) lognormal mixture and popular stochastic volatility models. We also provide a detailed analysis of the case where the unique optimizer of the dual problem does not have a continuous law, leading to optimization problems whose solvability by duality methods depends on the initial wealth of the investor.
منابع مشابه
Robust Mean-Covariance Solutions for Stochastic Optimization
We provide a method for deriving robust solutions to certain stochastic optimization problems, based on mean-covariance information about the distributions underlying the uncertain vector of returns. We prove that for a general class of objective functions, the robust solutions amount to solving a certain deterministic parametric quadratic program. We first prove a general projection property f...
متن کاملThe Tail Mean-Variance Model and Extended Efficient Frontier
In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...
متن کاملManagement Compensation and Portfolio Choice under Leverage Constraints
We analyze the implications of short-selling and margin purchase constraints for management compensation and portfolio optimization under moral hazard. First, looking at the managers problem, we show that her active portfolio (that is, net of the benchmark) will not be independent of the benchmark design. We solve analytically for the benchmark composition that maximizes e¤ort expenditure. Ana...
متن کاملTwo-Fund Separation under Model Mis-Specification
The two-fund separation theorem tells us that an investor with quadratic utility can separate her asset allocation decision into two steps: First, find the tangency portfolio (TP), i.e., the portfolio of risky assets that maximizes the Sharpe ratio (SR); and then, decide on the mix of the TP and the risk-free asset, depending on the investor’s attitude toward risk. In this paper, we describe an...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finance and Stochastics
دوره 18 شماره
صفحات -
تاریخ انتشار 2014